

Level 2 Certificate in Further Mathematics June 2012

Paper 1 8360/1

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
M Dep A method mark dependent on a previous method mark being awarded.

B Dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

Paper 1 - Non-Calculator

Q Q Answer

1(a)	9	Mark	Comments
$\mathbf{1 (b)}$	$\mathrm{f}(x) \geq 7$	B1	

$\mathbf{2}$	$\binom{10}{17}$	B2	B1 For each component $\binom{10+0}{5+12}$ scores B1

3	$3 x<-9$ or $x<-3$	M1	oe
	-4	A1	SC1 For $x \leq-4$

4(a)	$2\left(x^{2}-x-20\right)$	M1	Common factor might be removed later
	$\begin{aligned} & (2 x+a)(x+b) \text { or } \\ & 2(x+c)(x+d) \end{aligned}$	M1	$\begin{aligned} & a b= \pm 40 \text { or } 2 b+a= \pm 2 \\ & c d= \pm 20 \text { or } c+d= \pm 1 \end{aligned}$
	$2(x+4)(x-5)$	A1	$(2 x+8)(x-5)$ and $(x+4)(2 x-10)$ and $(x+4)(x-5)$ all score SC2 $(x-4)(x+5)$ scores SC1
4(b)	$(x+y)[(x+y)+(2 x+5 y)]$	M1	
	$(x+y)(3 x+6 y)$	A1	
	$3(x+y)(x+2 y)$	A1	$(x+y)(x+2 y)$ scores SC2
Alt 4(b)	$\begin{aligned} & x^{2}+x y+x y+y^{2}+2 x^{2}+2 x y+5 x y \\ & +5 y^{2} \end{aligned}$ or $3 x^{2}+9 x y+6 y^{2}$	M1	Condone two errors
	$\begin{aligned} & (x+y)(3 x+6 y) \text { or } \\ & (3 x+3 y)(x+2 y) \text { or } \\ & 3\left(x^{2}+3 x y+2 y^{2}\right) \end{aligned}$	A1	
	$3(x+y)(x+2 y)$	A1	$(x+y)(x+2 y)$ scores SC2

$\mathbf{5}$	$8 c^{3} d^{12}$	B2	B1 For two out of three components correct

Q	Answer	Mark	Comments
6	$\begin{aligned} & 2 y-3 x=4 \\ & 3 y+2 x=-7 \end{aligned}$	M1	oe Rearrange into suitable form for elimination Allow one error
	$6 y-9 x$ $=12$ and or $4 y-6 x$ and $6 y+4 x$ $=-14$ $9 y+6 x=-21$	M1	oe Attempting to equate x or y coefficients Allow one error
	$13 x=-26$ or $13 y=-13$	M1	oe Correct elimination from their equations only award if ≤ 1 error on first two M marks
	$x=-2$ and $y=-1$	A1	
$\begin{gathered} \text { Alt } 1 \\ 6 \end{gathered}$	$2 y=3 x+4$ $3 x=2 y-4$ and or and $3 y=-2 x-7$ $2 x=-3 y-7$	M1	oe Rearrange into suitable form for elimination Allow one error
	$6 y=9 x+12$ $6 x=4 y-8$ and or and $6 y=-4 x-14$ $6 x=-9 y-21$	M1	oe Attempting to equate x or y coefficients Allow one error
	$0=13 x+26$ or $0=13 y+13$	M1	oe Correct elimination from their equations Only award if ≤ 1 error on first two M marks
	$x=-2$ and $y=-1$	A1	
$\begin{gathered} \text { Alt } 2 \\ 6 \end{gathered}$	$x=-1.5 y-3.5$	M1	oe Rearrange into suitable form for substitution Allow one error
	$2 y=3(-1.5 y-3.5)+4$	M1	oe Substitution Allow one error
	$6.5 y=-6.5$	M1	oe Correct simplification from their equation Only award if ≤ 1 error on first two M marks
	$y=-1$ and $x=-2$	A1	

Q	Answer	Mark	Comments
$\begin{gathered} \text { Alt } 3 \\ 6 \end{gathered}$	$y=1.5 x+2$	M1	oe Rearrange into suitable form for substitution Allow one error
	$2 x=-3(1.5 x+2)-7$	M1	oe Substitution Allow one error
	$6.5 x=-13$	M1	oe Correct simplification from their equation Only award if ≤ 1 error on first two M marks
	$x=-2$ and $y=-1$	A1	

7	Angle $C A D=46$ or Angle $A C D=37$ or Angle $C D E=83$ or $(37+46)$ or Angle $A D C=97$ or $180-(37+46)$	M1	Any of these angles correctly marked or named ... could be on diagram
	Angle $D C E=46$ or Angle $A C E=83$ or $(37+46)$	M1	
	51	A1	

8(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+10 x$	M1	Allow one error
	$3-10(=-7)$	A 1	$3 \times 1+10 \times-1$ is sufficient
8(b)	$(y=)(-1)^{3}+5(-1)^{2}+1$	M 1	
	$(y=) 5$	A 1	
	Use of ' m ' $=-7$ seen or implied	M1	Must be used in an equation
	y - their $5=-7(x+1)$	A1 ft	oe eg. $y=-7 x-2$

Q	Answer	Mark	Comments
9	1:2:5	B3	B2 For any ratio that is one step away from the answer $\text { eg } \begin{aligned} & \sqrt{ } 12: 2 \sqrt{ } 12: 5 \sqrt{ } 12 \\ & \sqrt{ } 1: \sqrt{ } 4: \sqrt{ } 25 \\ & 2: 4: 10 \end{aligned}$ B1 For at least two of the three terms in their simplest form ie two of $2 \sqrt{ } 3: 4 \sqrt{ } 3: 10 \sqrt{ } 3$ B1 For any correct equivalent ratio $\begin{aligned} \text { eg } & \sqrt{ } 2: \sqrt{ } 8: \sqrt{ } 50 \\ & \sqrt{ } 3: \sqrt{ } 12: \sqrt{ } 75 \end{aligned}$

Q	Answer	Mark	Comments
10	$(5 n-3)^{2}+1$	M1	
	$25 n^{2}-15 n-15 n+9+1$	M1	Allow 1 error Must have an n^{2} term
	$25 n^{2}-30 n+10$	A1	
	$5\left(5 n^{2}-6 n+2\right)$	B1 ft	oe eg, shows that all terms divide by 5 or explains why the expression is a multiple of 5
$\begin{gathered} \text { Alt } 1 \\ 10 \end{gathered}$	Use of $a n^{2}+b n+c$ for terms of quadratic sequence ie, any one of $\begin{aligned} & a+b+c=5 \\ & 4 a+2 b+c=50 \\ & 9 a+3 b+c=145 \end{aligned}$	M1	
	$\begin{aligned} & 3 a+b=45 \\ & 5 a+b=95 \end{aligned}$	M1	For eliminating c
	$25 n^{2}-30 n+10$	A1	
	$5\left(5 n^{2}-6 n+2\right)$	B1 ft	oe eg, shows that all terms divide by 5 or explains why the expression is a multiple of 5
$\begin{gathered} \text { Alt } 2 \\ 10 \end{gathered}$	$\begin{array}{cccc} 5 & 50 & 145 & 290 \\ 45 & 95 & 145 \end{array}$ 2nd difference of $50 \div 2(=25)$	M1	$25 n^{2}$
	Subtracts their $25 n^{2}$ from terms of sequence $\begin{array}{lll} -20 & -50 & -80 \end{array}$	M1	-30n
	$25 n^{2}-30 n+10$	A1	
	$5\left(5 n^{2}-6 n+2\right)$	B1ft	oe eg, shows that all terms divide by 5 or explains why the expression is a multiple of 5

Q	Answer	Mark	Comments
11(a)	$\text { Gradient } A C=\frac{4-0}{0-12} \text { or }-\frac{1}{3}$	M1	oe
	$y=-\frac{1}{3} x+4$	A1	oe eg $x+3 y=4$ Must be an equation
11(b)	Gradient $O B=3$	B1 ft	ft Their gradient in (a) using $\mathrm{m}_{1} \times \mathrm{m}_{2}=-1$
	Equation of $O B: y=3 x$	M1	ft Their gradient $O B$
	$3 x=-\frac{1}{3} x+4$	M1	ft Their equations
	$x=\frac{6}{5}$ or 1.2	A1 ft	oe (x coordinate of midpoint of $O B$) ft From their linear equations
	$y=\frac{18}{5}$ or 3.6	A1	oe (y coordinate of midpoint of $O B$)
	$\left(\frac{12}{5}, \frac{36}{5}\right)$ or (2.4, 7.2)	B1 ft	oe ft Their x and y values for the midpoint

12(a)	Line $y=\frac{1}{2} x$ drawn	B1	Between $x=0$ and $x=4$
12(b)	Line $y=2$ drawn	B1	Between $x=0$ and $x=4$
12(c)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 6 x^{2}+a$	M 1	Allow one error
	$x=-1 \quad 6+a$	A 1	
	$x=2 \quad 24+a$	A 1	
	Their $(24+a)=2 \times$ their $(6+a)$	M 1	Must follow from their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and must be an
		equation in a	

Q	Answer	Mark	Comments
13	$(x+6)(x-2)$	B1	
	$(x+5)(x-5)$	B1	
	$x(x-5)$	B1	
	$\frac{\text { their }(x+6)(x-2)}{\text { their }(x+5)(x-5)} \times \frac{\text { their } x(x-5)}{x+6}$	M1	Must have attempted to factorise at least two of the above
	$\frac{x(x-2)}{x+5} \text { or } \frac{x^{2}-2 x}{x+5}$	A1	A0 if incorrect further work seen

14

$x=8^{\frac{2}{3}}$ or $x=\sqrt[3]{64}$ or $x^{3}=64$ or $\sqrt{x}=2$ or $x=2^{2}$	M1	
$x=4$	A1	
$y^{2}=\frac{4}{25}$ or $\frac{1}{y^{2}}=\frac{25}{4}$ or	M1	
$y^{-1}=\sqrt{\frac{25}{4}}$ or $\frac{1}{y}=\sqrt{\frac{25}{4}}$	A1	Accept $y= \pm \frac{2}{5}$ or $y^{-1}= \pm \frac{5}{2}$ or $\frac{1}{y}= \pm \frac{5}{2}$
$y=\frac{2}{5}$ or $y^{-1}=\frac{5}{2}$ or $\frac{1}{y}=\frac{5}{2}$	A 1	
10		

Q	Answer	Mark	Comments
15(a)	Correct use of Pythagoras' Theorem eg $Y Z=\sqrt{2^{2}-1^{2}}$	M1	oe
	$X=60^{\circ}$ and $\sin X=\frac{\sqrt{3}}{2}$	A1	$X=60^{\circ}$ stated or 60° marked on diagram
15(b)	Correct use of Sine Rule $\frac{2-\sqrt{3}}{\sin A}=\frac{(4 \sqrt{3}-6)}{\sin B}$	M1	oe
	$\sin B=\frac{(4 \sqrt{3}-6)}{(2-\sqrt{3})} \times \frac{1}{4}$	M1	oe $\text { eg } \frac{(4 \sqrt{3}-6)}{8-4 \sqrt{3}} \text { or } \frac{\sqrt{3}-1.5}{2-\sqrt{3}}$
	$=\frac{(4 \sqrt{3}-6)(2+\sqrt{3})}{4(2-\sqrt{3})(2+\sqrt{3})}$	M1	For multiplying both numerator and denominator by conjugate of the form $a+\sqrt{b}$ $\ldots \mathrm{ft}$ their expression for $\sin B$ eg $\frac{(4 \sqrt{3}-6)(8+4 \sqrt{3})}{(8-4 \sqrt{3})(8+4 \sqrt{3})}$ or $\frac{(\sqrt{3}-1.5)(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}$
	Numerator $=8 \sqrt{3}-12+12-6 \sqrt{3}$	A1 ft	$\text { eg } 32 \sqrt{3}-48+48-24 \sqrt{3} \text { or } \quad \begin{aligned} & 2 \sqrt{3}-3+3-1.5 \sqrt{3} \end{aligned}$
	Denominator $=4$	A1 ft	eg 16 or 1
	$\sin B=\frac{\sqrt{3}}{2}$ and $B=60^{\circ}$	A1	Clearly shown
Alt 1 15 (b)	$\frac{C D}{4 \sqrt{3}-6}=\frac{1}{4} \text { or } C D=\frac{1}{4}(4 \sqrt{3}-6)$	M1	oe where D is the foot of the perpendicular from C to $A B$
	$\sin B=\frac{\frac{1}{4}(4 \sqrt{3}-6)}{2-\sqrt{3}}$	M1	
	$\frac{\frac{1}{4}(4 \sqrt{3}-6)(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}$	M1	For multiplying both numerator and denominator by conjugate of the form $a+\sqrt{b}$... ft their expression for $\sin B$
	Numerator $=2 \sqrt{3}-3+3-1.5 \sqrt{3}$	A1 ft	
	Denominator $=1$	A1 ft	
	$\sin B=\frac{\sqrt{3}}{2} \text { and } B=60^{\circ}$	A1	Clearly shown

Q	Answer	Mark	Comments

Alt 2 15(b)	Correct use of Sine Rule $\frac{\sin A}{2-\sqrt{3}}=\frac{\sin B}{4 \sqrt{3}-6}$	M1 oe	
	$\frac{\sin \mathrm{A}(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}=\frac{\sin B}{4 \sqrt{3}-6}$	M1	
	$\frac{\sin \mathrm{A}(2+\sqrt{3})}{1}=\frac{\sin B}{4 \sqrt{3}-6}$	A 1	
	M1		
	Numerator $=2 \sqrt{3}-3+3-1.5 \sqrt{3}$	A 1	
	A1	Clearly shown	

16

$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$ and $\frac{1}{\tan \theta} \equiv \frac{\cos \theta}{\sin \theta}$	M1	oe
Denominator $=\sin \theta \cos \theta$	M1 Dep	oe
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}$	A1	All steps clearly shown
$\left(\sin ^{2} \theta+\cos ^{2} \theta \equiv 1\right)$ and $\frac{1}{\sin \theta \cos \theta}$		

